neurai.initializer package#
Submodules#
- class neurai.initializer.initializer.BernoulliIniter(prob=0.0)#
Bases:
Initializer
Initializes the UniformIniter.
- Parameters:
prob (float) – the probability of the Bernoulli distribution, by default 0.
- class neurai.initializer.initializer.ConstantIniter(value)#
Bases:
Initializer
Initializes the ConstantIniter.
- Parameters:
value (float) – the value to initialize the tensor with.
- class neurai.initializer.initializer.Initializer(key=None)#
Bases:
object
A base class for all initializer classes.
- Parameters:
key (PRNGKey) – The PRNGKey used to generate the random numbers.
- class neurai.initializer.initializer.KaimingUniformIniter(scale=2.0, mode='fan_in', distribution='uniform', in_axis=-2, out_axis=-1)#
Bases:
VarianceScalingIniter
Initializes the VarianceScalingIniter.
- Parameters:
scale (float) – the value to scale the variance.
mode (str) – indicates how to calculate the variance scaling factor.
distribution (str) – indicates the type of distribution to use.
in_axis (int) – indicates the input axis for computing the variance scaling factor, by default -2.
out_axis (int) – indicates the output axis for computing the variance scaling factor, by default -1.
- class neurai.initializer.initializer.LecunNormalIniter(scale=1.0, mode='fan_in', distribution='truncated_normal', in_axis=-2, out_axis=-1)#
Bases:
VarianceScalingIniter
Initializes the VarianceScalingIniter.
- Parameters:
scale (float) – the value to scale the variance.
mode (str) – indicates how to calculate the variance scaling factor.
distribution (str) – indicates the type of distribution to use.
in_axis (int) – indicates the input axis for computing the variance scaling factor, by default -2.
out_axis (int) – indicates the output axis for computing the variance scaling factor, by default -1.
- class neurai.initializer.initializer.NormalClipIniter(mean=0.0, stddev=1.0, minval=0.0, maxval=inf)#
Bases:
Initializer
Initializes the NormalClipIniter.
- Parameters:
mean (float) – the mean value of the normal distribution, by default 0.
stddev (float) – the standard deviation value of the normal distribution, by default 1.
minval (float) – the minimum value for clipping, by default 0.
maxval (float) – the maximum value for clipping, by default positive infinity.
- class neurai.initializer.initializer.NormalIniter(mean=0.0, stddev=1.0)#
Bases:
Initializer
Initializes the NormalIniter.
- class neurai.initializer.initializer.PoissonIniter(lam=1.0)#
Bases:
Initializer
Initializes the PoissonIniter.
- Parameters:
lam (float) – lambda of poisson distribution, by default 1.0
- class neurai.initializer.initializer.UniformIniter(minval=0.0, maxval=1.0)#
Bases:
Initializer
Initializes the UniformIniter.
- class neurai.initializer.initializer.VarianceScalingIniter(scale, mode, distribution, in_axis=-2, out_axis=-1)#
Bases:
Initializer
Initializes the VarianceScalingIniter.
- Parameters:
scale (float) – the value to scale the variance.
mode (str) – indicates how to calculate the variance scaling factor.
distribution (str) – indicates the type of distribution to use.
in_axis (int) – indicates the input axis for computing the variance scaling factor, by default -2.
out_axis (int) – indicates the output axis for computing the variance scaling factor, by default -1.
- class neurai.initializer.initializer.XavierUniformIniter(scale=1.0, mode='fan_avg', distribution='uniform', in_axis=-2, out_axis=-1)#
Bases:
VarianceScalingIniter
Initializes the VarianceScalingIniter.
- Parameters:
scale (float) – the value to scale the variance.
mode (str) – indicates how to calculate the variance scaling factor.
distribution (str) – indicates the type of distribution to use.
in_axis (int) – indicates the input axis for computing the variance scaling factor, by default -2.
out_axis (int) – indicates the output axis for computing the variance scaling factor, by default -1.